Superconducting tantalum disulfide nanotapes; growth, structure and stoichiometry.

نویسندگان

  • Charles W Dunnill
  • Ian MacLaren
  • Duncan H Gregory
چکیده

Superconducting tantalum disulfide nanowires have been synthesised by surface-assisted chemical vapour transport (SACVT) methods and their crystal structure, morphology and stoichiometry studied by powder X-ray diffraction (PXD), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and nanodiffraction. The evolution of morphology, stoichiometry and structure of materials grown by SACVT methods in the Ta-S system with reaction temperature was investigated systematically. High-aspect-ratio, superconducting disulfide nanowires are produced at intermediate reaction temperatures (650 degrees C). The superconducting wires are single crystalline, adopt the 2H polytypic structure (hexagonal space group P6(3)/mmc: a = 3.32(2) A, c = 12.159(2) A; c/a = 3.66) and grow in the <21_1_0> direction. The nanowires are of rectangular cross-section forming nanotapes composed of bundles of much smaller fibres that grow cooperatively. At lower reaction temperatures nanowires close to a composition of TaS(3) are produced whereas elevated temperatures yield platelets of 1T TaS(2).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering

Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...

متن کامل

Enhancement of superconductivity under pressure and the magnetic phase diagram of tantalum disulfide single crystals

In low-dimensional electron systems, charge density waves (CDW) and superconductivity are two of the most fundamental collective quantum phenomena. For all known quasi-two-dimensional superconductors, the origin and exact boundary of the electronic orderings and superconductivity are still attractive problems. Through transport and thermodynamic measurements, we report on the field-temperature ...

متن کامل

Influence of Electrolyte Composition and Voltage on the Microstructure and Growth Mechanism of Plasma Electrolytic Oxidation (PEO) Coatings on Tantalum: A Review

Recently, PEO process of tantalum has been developed as a method of producing corrosion-resistant, hard, wear-resistant, and biocompatible as well as having good adhesion coatings. In this review, we present the results of PEO process of tantalum in three main electrolytes. This review tries to measure the effect of electrolyte composition and voltage that were used within PEO procedure on the ...

متن کامل

Growth and Characterization of Thin MoS2 Films by Low- Temperature Chemical Bath Deposition Method

Transition metal dichalcogenide (TMDC) materials are very important inelectronic and optical integrated circuits and their growth is of great importance in thisfield. In this paper we present growth and fabrication of MoS2 (Molibdan DiSulfide)thin films by chemical bath method (CBD). The CBD method of growth makes itpossible to simply grow large area scale of the thin la...

متن کامل

Quasiparticle relaxation in optically excited high-Q superconducting resonators.

The quasiparticle relaxation time in superconducting films has been measured as a function of temperature using the response of the complex conductivity to photon flux. For tantalum and aluminum, chosen for their difference in electron-phonon coupling strength, we find that at high temperatures the relaxation time increases with decreasing temperature, as expected for electron-phonon interactio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 2 1  شماره 

صفحات  -

تاریخ انتشار 2010